3-D FABRICS – An Overview

13 Sep.,2023

 

2. 3-D Glass fabric can be applied in areas where high strength and/or weight reduction is needed and can act as an alternative to plywood, balsa, solid laminate, honeycombs, foams and more.

3-D WOVEN COMPOSITES

While the performance advantages of 3D composites are recognized, past applications have been restricted due to the high cost of producing the 3D reinforcement. Historically, applications that can afford the performance advantages have been restricted to aerospace development, typically including RTM (or other infusion). Recently, these materials have been finding increased usage in more commercial applications, particularly in marine structures and industrial components that are very cost sensitive. Due to the availability of heavy weight fabrics/reinforcements, and the subsequent reduction in lay-up labour, 3D fabrics can reduce the cost of finished composite structure.

The increasing interest and use of 3D textile composites is attributed to two factors: 1) improved performance due to controlled fiber distribution; and 2) lower cost through the use of automated textile processing equipment. Compared on a cost per square foot of finished composite structure, 3-D WEAVE reinforcements consistently outperform traditional 2D materials.

Application of 3-D woven composites

� In the marine company for building recreational boats.
� For manufacturing industrial pressure tanks.
� Alternative to a corrugated steel structure for the industrial/infrastructure market.

COMPARISON OF PROPERTIES OF 3-D WITH 2-D FABRICS

1. The absence of interlacing between warp and filling yarns allow the fabric to bend and internally shear rather easily, without buckling within the in-plane reinforcement which is not in case of 2-d fabrics.
2. The presence of Z-direction reinforcement in 3-d fabric is an obvious advantage, as dramatic improvement in composite transverse strength and impact damage tolerance is well documented. For example, tests of laminates made from these preforms have shown a 10�30% increase in short beam shear strength over 2D textile laminates.
3. These have shown improved compression after impact strength, reduced delamination area, and increased number of sub-perforation energy blows required to penetrate the panel.
4. Composites made from 3-d preforms exhibit high fiber content (% by weight). Although somewhat lower percentages can be expected, fiber content is still higher than in composites made from comparable 2D fabrics.

APPLICATIONS OF 3-D FABRICS

With completely controlled and tailor able fiber orientations in the X, Y and Z directions, the ability to weave aramid, carbon, glass, polyethylene, steel fibers etc. and any hybrid combination, thickness up to one inch (2.54 cm), width up to 72 inches (183 cm) and the ability to make net shapes, an almost infinite number of 3-D materials are possible with a tremendously wide range of performance.

If you have any questions on 3d spacer mesh fabric. We will give the professional answers to your questions.