Three-Dimensional Bi-Continuous Nanoporous Gold/Nickel Foam Supported MnO2 for High Performance Supercapacitors

23 Aug.,2023

 

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

A three-dimensional bi-continuous nanoporous gold (NPG)/nickel foam is developed though the electrodeposition of a gold–tin alloy on Ni foam and subsequent chemical dealloying of tin. The newly-designed 3D metal structure is used to anchor MnO 2 nanosheets for high-performance supercapacitors. The formed ternary composite electrodes exhibit significantly-enhanced capacitance performance, rate capability, and excellent cycling stability. A specific capacitance of 442 Fg −1 is achieved at a scan rate of 5 mV s −1 and a relatively high mass loading of 865 μg cm −2 . After 2500 cycles, only a 1% decay is found at a scan rate of 50 mV s −1 . A high power density of 3513 W kg −1 and an energy density of 25.73 Wh kg −1 are realized for potential energy storage devices. The results demonstrate that the NPG/nickel foam hybrid structure significantly improves the dispersibility of MnO 2 and makes it promising for practical energy storage applications.

To resolve this problem, we developed a mild two-step strategy to fabricate high quality NPG films directly supported on Ni foam for the loading of MnO 2 which acts as a high-performance supercapacitor. A room temperature electrodeposition method of the Au-Sn alloy was used to integrate the Au-Sn thin film directly onto the Ni foam, followed by selective chemical dealloying of Sn and electrodeposition of MnO 2 . The fabricating strategy is safe, facile, reproducible, and relatively inexpensive compared to other methods for preparing noble metal substrates. The hierarchical NPG/Ni foam structure is of great importance in our design of a supercapacitor as it not only ensures efficient charge/electrolytes transfer, but also provides a substrate with large surface area to disperse loaded MnO 2 and prevent it from agglomerating. Significant improvement was observed by comparing capacitive properties of samples with and without the NPG structure. By introducing NPG structure, the electrode exhibits a capacitance of nearly 3 times higher than the one without. The proposed 3D bi-continuous metal structure may have the potential to be applied to many promising energy storage devices in which the performance is mainly limited by the low conductivity of materials.

Recently, nanoporous gold (NPG) has attracted much attention for its excellent conductivity, large surface area, chemical stability, and biocompatibility. It has been regarded as a potential candidate for various areas such as supercapacitors 26 , 27 , sensors 28 , catalysis 29 , fuel cells 30 , and enhanced fluorescence 31 . Professor Chen et al. have proposed thick MnO 2 layer on free-standing NPG films to close the theoretical gravimetric specific capacitance of MnO 2 27 . They also fabricated these electrodes into nonaqueous symmetric supercapacitors for demonstrating the advantages of this structure 32 . However, traditional NPG films are typically obtained by etching Au-Ag alloy thin film derived from the melting method, which is unsafe and consume much energy. In addition, the highest gravimetric specific capacitance can only be gained when the MnO 2 layer is rather thin (very low mass-loading), which is far away from commercial application 33 .

To overcome the aforementioned drawback, a variety of strategies have been employed to improve the conductivity of MnO 2 . Jayan Thomas et al. utilized spin-on nanoprinting to print large area, well-ordered PAN nanopillar arrays for the loading of MnO 2 12 . Various carbon based composite materials, such as carbon nanoparticles (CNPs) 13 , carbon nanotubes (CNTs) 14 – 18 , carbon nanowires (CNWs) 19 – 21 , and graphene 22 – 25 have also been introduced to create hybrid materials with MnO 2 oxides to improve the conductivity. Despite some of the improvements, researchers still suffer from complex fabricating procedures and modest capacitive behavior.

The rapid development of the electronics industry has increased demands in corresponding electrical energy storage devices. Among various energy storage devices, pseudocapacitors have attracted significant interest during the past decade due to their high specific capacitance, excellent charge/recharge characteristics, and long cycling life 1 . The most widely used active electrode materials for pseudocapacitors include transition metal oxides and hydroxides such as RuO 2 2 , 3 , CoO 4 , NiO 5 , and MnO 2 6 , which possess a range of reversible oxidation states for highly efficient redox charge transfer. Among them, MnO 2 has been regarded as one of the most promising pseudocapacitive materials for high performance supercapacitors (SCs) owing to its high theoretical specific capacitance (1370 F g −1 ), low cost, environmentally friendly nature, and natural abundance 7 , 8 . However, MnO 2 electrodes often suffer from intrinsically poor conductivity (10 −5 ~10 −6 S cm −1 ) 9 , 10 . The respectable theoretical capacitance can only be realized in the form of thin films (ten of nanometers) or nanoparticles with a low loading amount (<10 μg cm −2 ) 11 .

Results

Figure  shows low and high-magnification SEM images of the MnO2/NPG/Ni foam (denoted as MnO2/NPG) and the MnO2/Ni foam. The Ni foam has the typical morphology of a porous framework, with a pore size of 200–300 μm (Fig.  ). From Fig.  , it can be seen that a continuous thin film of NPG is uniformly coated on the Ni foam and the nanopores are of 50–150 nm. Few cracks were observed during the dealloying procedure because the initial Sn/Au ratio (about 1:1 in atomic ratio) is not enough to cause a significant shrinkage of volume. After depositing MnO2 on NPG, we can see that some nanosheets were loaded on NPG skeleton (Fig.  ). For the sample with the MnO2 plating amount up to 865 μg cm−2 (examined by ICP), no obvious agglomeration of MnO2 nanosheets was observed on the surface of the NPG film. As a control group, MnO2 directly deposited on Ni foam presents numerous, densely-packed MnO2 nanosheets (Fig. j-l). In contrast, the MnO2/NPG (Fig.  and inset) illustrates a bi-continuous nanoporous structure that consists of quasi-periodic nanopores and gold ligaments, on which the MnO2 layer appears much more dispersive. The detailed structure of MnO2/NPG can also be observed in TEM image (inset in Fig.  ).

The evidence of successful hybridization can also be verified through the energy-dispersive spectrum (EDS), shown in Fig.  . Only three metallic elements in the MnO2/NPG electrode were detected. The corresponding elemental mapping images demonstrated the uniform distribution of O, Mn, Ni, and Au (Fig.  ), which match the SEM images very well.

The BET measurement (Fig.  ) reveals that the specific surface area of Ni foam approaches zero relative to nanoporous gold’s level (24.8 m2 g−1), and the specific surface area of MnO2/NPG was reduced to approximately 80% (19.84 m2 g−1) as a result of the MnO2 electrodeposition, which is in good agreement with SEM and TEM results.

The XPS spectra of the MnO2/NPG and MnO2/Ni foam electrodes are shown in Fig.  . It mainly consists of two distinct peaks centred at 642.8 eV and 654.6 eV, which are respectively ascribed to Mn 2p3/2 and Mn 2p1/234. In this work, the signals of Mn 2p are most likely caused by the Mn4+ chemical state as MnO2. In addition, the Mn4+ peaks of the MnO2/NPG distinctly shift to higher energies than those of the MnO2/Ni foam, indicating the strong chemical interaction between Au and MnO2 6,35. For a deposition time of 20 min, the amounts of loaded MnO2 are almost the same for the two electrodes, but the peaks’ intensity of Mn4+ in the MnO2/NPG is much higher, revealing that the presence of nanoporous gold significantly improved the dispersibility of MnO2 on the substrate36. These results also suggest that the introduction of nanoporous gold onto nickel foam may contribute to enhanced ion and electron diffusion, resulting in a high-rate performance.

The electrochemical measurements of the MnO2/NPG and MnO2/Ni foam electrodes were tested in 1 mol/L Na2SO4. Typical CV curves of the MnO2/NPG electrode at scan rates ranging from 5 to 100 mV s−1 show much better rectangularity than that of the MnO2/Ni foam electrode (Fig.  ). It is obviously seen that the current intensity increases with the scan rates, while the positions of the redox peaks shift slightly6, showing its good electrochemical reversibility. Generally, the energy storage process of MnO2 is a reversible successive surface redox reaction, resulting the shape of CV curves similar to the electric double layer capacitor (EDLC)37, which also can be showed in Fig.  . However, the radius of electrolyte ions and the microstructure of the MnO2 can possibly lead to faradic phenomena occur during the charge-storage mechanism, which is not so successive. As described in several previous researches, the microstructure of the MnO2@NPG/Ni foam has a big difference with MnO2/Ni foam, which can make the intercalation/deintercalation of ions in the MnO2 solid phase possible and result in the redox peaks in CV curves32,38–40.

The higher current densities obtained by the MnO2/NPG show improved electron transportation and lower internal resistance. The superior performances of the MnO2 loaded on the NPG/Ni foam can be attributed to two main reasons: (1) the large contact area between the current collector and active material can significantly shorten the electron transfer distance and increase the number of electrochemically active sites for the redox reaction and (2) dispersing capacitive materials onto a large surface area greatly improved the conductivity of pseudocapacitive materials12.

Galvanostatic charge-discharge (GCD) curves were performed in Fig.  . The GCD curves of the MnO2/NPG, with current density ranging from 1 A g−1 to 10 A g−1, are more symmetrical than those of the MnO2/Ni foam, which validate its improved capacitive behavior. In addition, at the start of the discharge curves, the voltage drop is quite small, indicating very low internal resistance between the electrodes.

For specific capacitances at various scan rates, the MnO2/NPG electrode showed an increase of approximately 3 times when compared to the MnO2/Ni foam electrode, as is shown in Fig.  . The C v decreases with an increase of the scan rates, and the highest specific capacitance of the MnO2/NPG electrode reached upwards of 442 F g−1 at the scan rate of 5 mV s−1. The consistency of these curves reveals the excellent capacitive behavior of the MnO2/NPG electrode. Besides, this capacitance of this MnO2/NPG electrode was compared with some previous researches based on MnO2 material, demonstrating rather good performance, as presented in Table  .

Table 1

ElectrodeSpecific capacitance/F g−1 Current density/A g−1 Scan rate/mV s−1 ReferenceMnO2/Ni foam325—5 41 MnO2/nanoporous silver3841— 42 MnO2/Au core-shell5240.56— 43 Porous MnO2 tubes3650.25— 15 Al doped MnO2 2130.1— 44 MnO2@Graphene130—2 45 SWNTs@MnO2/polypyrrole351—1 17 MnO 2 /NPG 3781This work MnO 2 /NPG 4425This workOpen in a separate window

The enhanced electrochemical performance of the MnO2/NPG hybrid electrode was further confirmed by the electrochemical impedance spectroscopy (EIS) measurements. Figure  shows the Nyquist plots for the MnO2/NPG and the MnO2/Ni foam after the 2500th and 1000th cycles respectively. The equivalent electrical circuit in Fig.  was obtained by fitting the impedance data. The internal resistance (R s) is the sum of the ionic resistance of the electrolyte, the intrinsic resistance of active materials, and the contact resistance at the active material/current collector interface. The Faradic reactions corresponded to the interfacial charge transfer resistance (R ct), which are related to the interface between the electrode and electrolyte, and the electrical charge transfer in the Faradic process of the electrode materials. A constant phase element was used to account for the double-layer capacitance and pseudocapacitance. The Warburg impedance corresponds to the straight line in low-frequency area, which is associated with the ion diffusion in the electrode. The charge-transfer resistances obviously decreased with nanoporous gold coating, which reveals that the bi-continuous nanoporous network of the MnO2/NPG electrode significantly improved the conductivities of the electrode materials, ion transfer, and charge transfer.

After cycles, the R ct of the MnO2/NPG electrode decreased from 95.56 Ω to 23.59 Ω where the MnO2/Ni foam electrode evidently increased from 543.1 Ω to 3541 Ω. The increased resistance of the MnO2/Ni foam is mainly attributed to the low conductivity of MnO2, compared with the as prepared MnO2. MnO2 sheets after cycles become larger and thicker after 1000 cycles, which causes lower electron/ion transfer and thereby capacitance fading of pure MnO2 due to the reduced effective surface areas and low electronic conductivity. To prove these, SEM images of MnO2/NPG electrode and MnO2/Ni foam electrode after cycling 2500 time and 1000 time were shown in Figure S1. As seen in the SEM images, after 1000 cycles, most of the MnO2 sheets loaded directly on Ni foam agglomerate tightly, which could be the main reason for the increase of Rct (Figure S1a–c). However, the structure of the MnO2@NPG/Ni foam electrode retained well and distribution of MnO2 sheets seems more uniform, which contributes to the decrease of the Rct (Figure S1d–f). Compared to the bare MnO2 micro-supercapacitor, the MnO2/NPG composite micro-supercapacitor has a lower resistance, which is of great importance since less energy and less power will be wasted to produce unwanted heat during the charge–discharge processes.

Furthermore, the cycling performances of the MnO2/NPG electrode and the MnO2/Ni foam electrode after long-term cycling are shown in Fig.  . The specific capacitance of the MnO2/Ni foam electrode rapidly dropped to 65.3% after 1000 cycles, as a result of irreversible reactions. Instead, the MnO2/NPG electrode was found to exhibit an excellent cycle life over the entire cycle-number range. The capacitance retention of the MnO2/NPG electrode is quite stable and still remains 99% of its initial value even after 2500 cycles, indicating that the electrode materials had excellent cycle stability and quite a high degree of reversibility in charge-discharge cycling.