Centrifugal Slurry Pumps - High Qualtiy Industrial Slurry Pump

04 Sep.,2023

 

There are a couple of variations to a centrifugal pump. Some models of centrifugal pumps have a separate shaft for the pump and the motor. The connection between the separated shafts is called the coupling. These coupled pumps will contain a bearing house with bearings. The pump shaft then continues into the pump casing. As it enters the casing it passes through a gland, packing, and the stuffing box, which combined to form a seal. The shaft then connects to the impeller. The impeller imparts centrifugal force onto the fluid that makes it to move liquids through a pipe or hose. The impeller is in the pump casing. The casing contains and directs the flow of water as the impeller pulls it in through the suction inlet and pushes it out through the discharge outlet.

At the back of the motor, the fan connects to the shaft. The motor rotates the shaft and fan. The fan cools down the motor/engine, and it blows ambient air over the casing to dissipate unwanted heat. If the motor becomes too hot, the insulation on the coils inside the motor melts, causing the motor or engine to short circuit and destroy itself. The fins on the outside perimeter of the casing increase the surface area of the casing, which allows for removing more unwanted heat. The motor comes in either three-phase or single-phase configuration, depending on the application.

Inside the three-phase induction motor, there are three separate coils, which wind around the stator. Each coil set is connected to a different phase to reduce a rotating magnetic field. When AC or alternating current passes through each coil, the coil produces an electromagnetic field that changes in intensity, as well as polarity. The electrons passing through it change direction between forwards and backward. If each coil connects to a different phase, then the electrons will change direction between forwards and back at different times compared to the other phases. If this happens, then the magnetic field of each coil will change the intensity and polarity. In order to distribute the magnetic field properly, the coils are rotated 120 degrees from the previous phase and inserted into the stator of the motor casing, thus creates the effect of a rotating magnetic field.

At the center of this stator are the rotor and shaft. The rotor is affected by the rotating magnetic field and forces it to auto-rotate. The rotor connects to the shaft, which runs from the fan to the impeller. When the rotor rotates, so does the impeller. By creating the rotating magnetic field within the motor, the rotor spins the shaft and the impeller.

At the pump casing, there is a channel for water to flow along, which is called the volute. The volute spirals around the perimeter of the pump casing to the outlet. This channel increases in diameter as it makes its way to the outlet. The shaft passes through the seals and into the pump casing, where it connects to the impeller.

There are many types of impellers, but most have backward curved veins, which will either be open, semi-open, or closed. These backward-curved veins do not push the water. The curves rotate with the outer edge moving in the direction of the expanding volute. These veins will provide the fluid with a smooth path for the water to flow.

For more information How Does a Slurry Pump Work?, please get in touch with us!